Genetic background modifies inner ear and eye phenotypes of jag1 heterozygous mice.
نویسندگان
چکیده
Mice heterozygous for missense mutations of the Notch ligand Jagged1 (Jag1) exhibit head-shaking behavior indicative of an inner ear vestibular defect. In contrast, mice heterozygous for a targeted deletion of the Jag1 gene (Jag1del1) do not demonstrate obvious head-shaking behavior. To determine whether the differences in inner ear phenotypes were due to the types of Jag1 mutations or to differences in genetic background, we crossed Jag1del1 heterozygous mice onto the same genetic background as the missense mutants. This analysis revealed that variation of the Jag1 mutant inner ear phenotype is caused by genetic background differences and is not due to the type of Jag1 mutation. Genome scans of N2 backcross mice identified a significant modifier locus on chromosome 7, as well as a suggestive locus on chromosome 14. We also analyzed modifiers of an eye defect in Jag1del1 heterozygous mice from this same cross.
منابع مشابه
The Candidate Splicing Factor Sfswap Regulates Growth and Patterning of Inner Ear Sensory Organs
The Notch signaling pathway is thought to regulate multiple stages of inner ear development. Mutations in the Notch signaling pathway cause disruptions in the number and arrangement of hair cells and supporting cells in sensory regions of the ear. In this study we identify an insertional mutation in the mouse Sfswap gene, a putative splicing factor, that results in mice with vestibular and coch...
متن کاملGfi1Cre mice have early onset progressive hearing loss and induce recombination in numerous inner ear non-hair cells
Studies of developmental and functional biology largely rely on conditional expression of genes in a cell type-specific manner. Therefore, the importance of specificity and lack of inherent phenotypes for Cre-driver animals cannot be overemphasized. The Gfi1Cre mouse is commonly used for conditional hair cell-specific gene deletion/reporter gene activation in the inner ear. Here, using immunofl...
متن کاملEmbryonic lethality and vascular defects in mice lacking the Notch ligand Jagged1.
The Notch signaling pathway is an evolutionarily conserved intercellular signaling mechanism essential for embryonic development in mammals. Mutations in the human JAGGED1 ( JAG1 ) gene, which encodes a ligand for the Notch family of transmembrane receptors, cause the autosomal dominant disorder Alagille syndrome. We have examined the in vivo role of the mouse Jag1 gene by creating a null allel...
متن کاملJagged1 heterozygosity in mice results in a congenital cholangiopathy which is reversed by concomitant deletion of one copy of Poglut1 (Rumi).
UNLABELLED Haploinsufficiency for the Notch ligand JAG1 in humans results in an autosomal-dominant, multisystem disorder known as Alagille syndrome, which is characterized by a congenital cholangiopathy of variable severity. Here, we show that on a C57BL/6 background, jagged1 heterozygous mice (Jag1(+/-) ) exhibit impaired intrahepatic bile duct (IHBD) development, decreased SOX9 expression, an...
متن کاملThe Notch Ligand JAG1 Is Required for Sensory Progenitor Development in the Mammalian Inner Ear
In mammals, six separate sensory regions in the inner ear are essential for hearing and balance function. Each sensory region is made up of hair cells, which are the sensory cells, and their associated supporting cells, both arising from a common progenitor. Little is known about the molecular mechanisms that govern the development of these sensory organs. Notch signaling plays a pivotal role i...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Genetics
دوره 177 1 شماره
صفحات -
تاریخ انتشار 2007